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FOREWORD 

This document p re sen t s the r e su l t s of work performed 

by the Fluid Mechanics and T h e r m a l Environment sections of 

the Lockheed-Hunt svil le R e s e a r c h & Engineering Center . This 

work was ca r r i ed out under Contract NAS8-28057, "Study of 

High Altitude P lume Impingement ," for the Aero-As t rodynamics 

Laboratory of Mar sha l l Space Flight Cen te r . The NASA Con­

tracting Officer 's Representa t ives for this contract were D r . 

T . F . Greenwood and M r . D. C. Seymour . 
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SUMMARY 

A p r o c e d u r e i s given for determining the radiat ion in tensi t ies in the 

base region of the space shuttle vehicle due to solid par t ic le radiat ion e m a ­

nating f rom the solid rocket motors of the shut t le . Resul ts of an analys is of 

the Ti tan III and s imulated solid rocket motor radiation intensi t ies a r e p r e ­

sented. A d e s c r i p t i o n of the gas par t i c le flow fields of the Titan III nozzle and 

plume and a space shutt le solid rocket motor nozzle and plume is p re sen ted . 

A d i s c u s s i o n of the gaseous Titan III flow fields is presented which ut i l izes 

the r e su l t s of flow fields genera ted by a gaseous and two-phase method-of-

c h a r a c t e r i s t i c s computer p r o g r a m s . The development of a two-phase computer 

flowfield ana lys i s p r o g r a m is d i scussed . An outflow cor rec t ion theory is d e ­

veloped which will be used to modify existing convection heat t r ans fe r methods 

for bet ter heat t r a n s f e r predic t ions on bodies i m m e r s e d in rocket exhaust 

plumes. . 
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Section 1 

INTRODUCTION 

Successful design of the space shuttle vehicle will depend heavily upon 

the t h e r m a l environment produced by the exhaust of liquid and solid rocket 

moto r s which will be used for propulsion, att i tude control and separa t ion . 

The resu l tan t t h e r m a l environment due to the rocket exhaust may be caused 

by. heating due to. radiat ion from the plumes and /o r d i rec t plume impingement . 

Reliable analyt ic models mus t be available which will predic t the environments 

in the exhaust p lumes which contribute to the t h e r m a l environment encountered 

by the shu t t l e . 

The exist ing techniques for predic t ion plume impingement heating and 

radiat ion heating for liquid rocket moto r s have shown to be adequate during 

the Saturn p r o g r a m . However, solid rocket motors complicate the problem 

of predict ing the environment within the exhaust p lume . Solid rocket moto r s 

have m e t a l addi t ives in the propellant to i nc r ea se the energy content of the 

sy s t em. These me ta l addit ives produce condensed solid and liquid pa r t i c l e s 

in the exhaust ga ses which radical ly change the t e m p e r a t u r e s and p r e s s u r e s 

which a r e encountered within the p l u m e s . There fore , the techniques which 

were used to pred ic t the p lumes of liquid rocket engines must be revised and 

extended to handle the p rob lems associa ted with solid propellant m o t o r s . 

Lockheed-Huntsvi l le has reini t iated work on an equi l ibr ium chemis t ry 

coupled two-phase flowfield analysis p r o g r a m under this cont rac t . When this 

computer p r o g r a m is operat ional it will be able to de sc r i be the exhaust flow 

field of solid m o t o r s as well as existing liquid analyses desc r ibe the flow fields 

of liquid rocket m o t o r s . Section 2 of this r epor t briefly desc r ibes this computer 

p r o g r a m and l i s t s i ts p resen t capabi l i t i es . Ult imately the output from this 

p r o g r a m will be used for de te rmin ing the envi ronments produced due to plume 

impingement , solid par t i c le radiat ion and gaseous radia t ion . 
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Section 3 p r e sen t s the s t a t e -o f - the -a r t techniques for predict ing the 

the rmal environment encountered by vehicles due to radiation from the solid 

and liquid par t ic les which a r e p resen t within a solid rocket motor p lume . 

Because numerous vehic les in the past have been destroyed or sever ly 

damaged by this type of heating it is important that the analytic techniques 

for predicting this type of heating be well unders tood. Section 3 a lso p r e ­

sents analys is and compar i sons of the resu l t s of solid par t ic le radiat ion 

studies performed for the Ti tan III and a simulated space shuttle solid 

rocket mo to r . 

When undertaking a study to advance the techniques 'in a field it is of 

in te res t to know what the differences in the resu l t s a r e between the old and 

new techniques. Section 4 p r e s e n t s the resu l t s of a study which pred ic t s the 

exit plane p roper t i e s of the Ti tan III 120-inch solid motor utilizing both solid 

and liquid rocket nozzle ana lys i s p r o g r a m s . 

Of further in te res t of work performed during this contract a r e methods 

that were developed for improving the heating predict ion techniques of the 

Lockheed - Hunt sville P lume Impingement Computer P r o g r a m (Ref. 1-1) d e ­

veloped under Contracts NAS8-25511 and NAS8-21463. Current theor ies for 

predicting heat t r ans fe r r a t e s on vehicles subjected to rocket exhaust impinge­

ment do not utilize an adequate theory for predict ing cor rec t ions whicn account 

for the outflow-induced thinning of the boundary l aye r . Section 5 p re sen t s an 

outflow cor rec t ion theory that will be used at a future date to modify the existing 

convective heat t r ans fe r methods in the Plume Impingement p r o g r a m . 
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Section 2 

SUPERSONIC TWO-PHASE COMPUTER PROGRAM DEVELOPMENT 

The p r e sen t concept of the space shuttle vehicle has numerous solid 

rocket mo to r s for main propuls ion, separa t ion and abort capabi l i t i es . Metal 

addit ives a r e incorpora ted into the solid propel lants of these mo to r s to in ­

c r e a s e the energy content of the sys t em and a l so suppress combustion p r e s ­

su re in s t ab i l i t i e s . The p r e s e n c e of these meta l additives r e su l t s in condensed 

products iri the exhaust gases which can resul t in severa l d i sadvan tages . Since 

, the condensed products can do no expansion work, thei r p r e sence can only 

de t rac t from the effectiveness of the nozzle to do expansion work in converting 

t h e r m a l to kinet ic energy . Also, the p resence of liquid or solid pa r t i c l e s in 

the exhaust will contr ibute significant port ions of radiat ion and plume impinge­

ment heating on any s t ruc tu re s which a r e ei ther i m m e r s e d or in close proximity 

to the exhaust p lume . It i s there fore important to know the physical p rope r t i e s 

throughout the nozzle and exhaust p l u m e s . 

An extensive l i t e r a t u r e survey was made to de te rmine what computer 

p r o g r a m s w e r e avai lable for calculating two-phase flow fields for use in the 

space shutt le base heating and plume impingement heating a r e a s . Two basic 

types of twos-phase computer p r o g r a m s were found to exist: (1) uncoupled two-

phase p r o g r a m s such as Aeronut ronics (Ref. 2-1) and; (2) coupled two-phase 

p r o g r a m s such as Kl iegel ' s (Ref. 2-2) . Uncoupled two-phase p r o g r a m s t r a c e 

solid or liquid pa r t i c l e s through an a l ready generated gaseous flow field and 

do not consider the effect the pa r t i c l e s have on the gas due to drag and heat 

t r a n s f e r . Coupled two-phase p r o g r a m s include the effects of the pa r t i c l e s 

on the gas a s well as the gas on the p a r t i c l e s . However, the existing coupled 

p r o g r a m s a r e p r ima r i l y nozzle pe r fo rmance p r o g r a m s which do not include 

the flow chemis t ry (equil ibrium or frozen) in tlie ana lys i s . 
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The object of this study was to continue work done under Contract 

NAS8-21094 (Ref. 2-3) , to develop a two-phase computer p r o g r a m which 

will d e s c r i b e two-dimensional and ax i symmet r i c gas -pa r t i c l e flow fields, 

including equi l ibr ium and frozen flowfield chemis t ry and the effect of shock 

waves . The two-phase capability has been incorporated into Lockheed's 

S t reaml ine Norma l Method-of -Charac te r i s t i c s Computer P r o g r a m (Ref. 2-4) . 

The governing equations have been reder ived and incorporated into the 

two-phase s t r eaml ine no rma l p r o g r a m . The equations were derived in a form 

in which the effects of equi l ibr ium chemis t ry a r e included. The full develop­

ment of the equations which will be incorporated into a future document is 

based on the following assumpt ions : 

• The pa r t i c l e s a r e spher ical ly shaped. 

• The total m a s s of the mix tu re is cons tant . 

e The total energy of the mixture is constant . 

• The pa r t i c l e in te rna l t empe ra tu r e is uni form. 

• The gas and pa r t i c l e s exchange t h e r m a l energy by 
convection only. 

• The gas obeys the perfect gas law and is frozen or in 
chemica l equi l ibr ium. 

• The forces acting on the control volume a r e the p r e s s u r e 
of the gas and the drag of the p a r t i c l e s . 

• The gas is inviscid except for the drag it exer t s on the 
-par t ic les . 

• T h e r e a r e no pa r t i c l e in t e rac t ions . 

• The volume occupied by the pa r t i c l e s is negl igible . 

0 The re is no m a s s exchange between the p h a s e s . 

• A d i s c r e t e number of pa r t i c l e s , each of different size 
or chemical spec ie s , is chosen to r e p r e s e n t the actual 
continuous pa r t i c l e d is t r ibut ion . 

• The pa r t i c l e s a r e i ne r t . 

When the final checkout of the two-phas3 p r o g r a m is completed it will 

be able to opera te in e i ther the two-phase or gaseous-only mode, and the 
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p r o g r a m will contain the same capabili t ies as Lockheed 's Var iable O / F 

Method-of -Charac te r i s t i c s p r o g r a m descr ibed in Ref. 2 - 5 . The two-phase 

operat ion of the p r o g r a m will be able to handle up to ten different condensed 

species with each specie capable of having an input table of specific heat as 

a function of t e m p e r a t u r e . The equil ibr ium or frozen gaseous thermochemistry-

data will be calculated using a modified vers ion of the NASA-Lewis Chemical 

Equi l ibr ium Combustion Computer P r o g r a m (Ref. 2-6) . These data will be 

input to the two-phase p r o g r a m via tape or card input. The output from the 

two-phase p r o g r a m will contain al l the gaseous and condensed species data 

which a r e n e c e s s a r y to .perform any subsequent radia t ion heating or plume 

impingement heating a n a l y s e s . Upon final checkout of the p r o g r a m a document 

will be published which contains a complete descr ip t ion of the p r o g r a m as well 

a s a detai led input guide. 
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Section 3 

PARTICLE RADIATION ANALYSIS FOR THE 120-INCH TITAN 
AND SIMULATED SHUTTLE MOTORS 

Design of the t h e r m a l protect ion sys tem (TPS) for the space shuttle 

will r equ i re a thorough knowledge of the heating that r e su l t s from pa r t i c l e 

radiation of solid motor exhaust p l u m e s . Excess ive heating to the base 

region has destroyed many of the e a r l i e r m i s s i l e s during liftoff. Because 

of the-weight penalty imposed, excess ive insulat ion for the-base"-.region, i s 

undes i rable . It is there fore ext remely important to be able to predic t the 

heating to the base region incur red from the pa r t i c l e radia t ion . Much of 

the radiation from solid propel lant rocket p lumes is due to m i c r o n - s i z e 

alumina p a r t i c l e s . The complexity of the p rob lem of predict ing pa r t i c l e 

radiat ion requi res knowledge of the following quant i t ies : (1) pa r t i c l e environ­

ment ( temperature and p r e s s u r e dis t r ibut ions of the plume); (2) the size d i s ­

tr ibution of the a lumina pa r t i c l e s within the p lume; (3) the sca t te r ing and 

absorption coefficients of the p a r t i c l e s ; (4) the index of refract ion of the 

alumina as a function of t e m p e r a t u r e and wavelength; and (5) the radiance 

of the alumina pa r t i c l e cloud. 

Numerous methods a r e avai lable for de termining the radiance of a 

par t ic le cloud from a solid propel lant motor but, cu r ren t ly , the most accep t ­

able method is the Chrys le r modified ve r s ion of the Ph i l co -Ford aeronut ron ics 

p r o g r a m (Ref. 3-1). This is an uncoupled p r o g r a m in that it cons iders only 

pa r t i c l e radiation with no gas radiat ion calculat ions pe r fo rmed . The purpose 

of the cur ren t study i s to develop a confidence level in the p r o g r a m for future 

space shuttle studies by using the p r o g r a m to examine the pa r t i c l e radiat ion 

effects of two selected solid propel lant rocket m o t o r s . 

The problem of predict ing the pa r t i c l e radiat ion of plumes from solid 

propellant rocket m o t o r s can be divided into two d i sc ip l ines . These a r e : 
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(1) p a r t i c l e environment and t ra jec tory calculat ions , and (2) par t i c le radiat ion 

p r e d i c t i o n s . Section 3 .1 d i s cus se s the pa r t i c l e environment and t ra jec tory c a l ­

culat ions for the 120-inch Titan motor and a 1.3 scale vers ion of the Titan 

(which closely approx imates the shuttle engine). Relative compar isons a r e 

made between the pa r t i c l e t r a j ec to r i e s and environments of the two m o t o r s . 

The pa r t i c l e radia t ion from the two solid propellant rocket exhaust plumes 

a r e d i s cus sed and compared . 

3.1 PARTICLE ENVIRONMENT AND TRAJECTORY 

Before pa r t i c l e t r a jec to ry or radiat ion calculat ions can be per formed, 

a gas flow field mus t be generated for the nozzle geometry of i n t e r e s t . The 

gas flow fields for the 120-inch Titan and the approximate shuttle engines 

w e r e de t e rmined using the Lockheed-Hunts ville Method-of -Charac te r i s t i cs 

(MOC) Computer P r o g r a m (Ref. 2 -5) for the supersonic port ion of the nozz les . 

Real gas effects were considered in the flow field and were de termined by the 

Chemical Equ i l ib r ium Composit ion P r o g r a m (CEC) Ref. 2-6) . The A e r o -

nut ronics p r o g r a m a s s u m e s the gas flow to be ideal and one-dimensional from 

the rocket chamber to the supersonic section of the rocket nozz le . P rob lems 

the re fore a r o s e in matching these two t h e o r i e s . A point along the center l ine 

of the nozzle downs t r eam of the nozzle throat , at which there were sufficient 

c h a r a c t e r i s t i c s data ava i lab le , was selected for the in terchange of the two 

t h e o r i e s . The s ta t ic p r e s s u r e , s ta t ic t e m p e r a t u r e , Mach number and ra t io 

of specific heats (gamma) were de termined at this point from the MOC flow 

field. These local flowfield p r o p e r t i e s were used with a one-dimensional 

theory to compute new total conditions in the rocket combustion chamber . 

With the new total condit ions, which were slightly different from the original 

chamber condit ions, and gamma known, a flow field, assuming one-dimension 

theory , was obtained which matched the MOC flowfield p rope r t i e s at the given 

point d o w n s t r e a m of the nozzle th roa t . The Aeronutronics p r o g r a m a r r a n g e s 

the flowfield, genera ted by the two theo r i e s , by retting up a rec tangular meeh 
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of gas p rope r t i e s at var ious axial locations from the chamber to the nozzle 

exit plane and throughout the exhaust p lume. This is done in o rde r to p r o ­

vide the n e c e s s a r y environments for the pa r t i c l e s in the pa r t i c l e t ra jec tory 

calculat ion. 

When the gas flow field for the nozzle and plume a r e completely spec i ­

fied, subroutine TRAJEC, of the Aeronutronics p r o g r a m begins the par t i c le 

t ra jec tory ca lcula t ions . The par t ic le t ra jec tory equations a r e solved by the 

method of finite di f ference. As a lways, the difficulty in using the finite differ­

ence method l ies in determining, the. t ime step such that the stability r e q u i r e ­

ments a r e met for each of the equations to be solved. The basic equations to 

be solved by the finite difference method a r e ; (1) par t ic le location (x and y 

coordinates of the par t i c le ) ; (2) pa r t i c le velocity; and (3) par t ic le t e m p e r a t u r e . 

Reference 3-1 l i s t s these equations along with four equations for determining 

t ime s t e p s . The select ion of the min imum value of the four t ime steps ca lcu­

lated should meet the stabili ty r equ i remen t s in each of the equat ions . While 

attempting to de te rmine pa r t i c l e t r a j ec to r i e s for the 120-inch Titan it was 

found that the min imum t ime step calculated, from the four equations, was 

so smal l that the computer run t ime became excessively long. This min imum 

time step was to a s s u r e stabili ty in the pa r t i c l e t empe ra tu r e calculat ion. It 

was decided not to use this t ime step but instead use the min imum value of 

the th ree remaining computed t ime s t e p s . This was the co r r ec t decis ion in 

that the run t ime was great ly reduced with l i t t le or no effect on the par t ic le 

t e m p e r a t u r e ca lcula t ions . The only apparent resu l t which could possibly be 

at tr ibuted to an instabil i ty in the finite difference equations were very slight 

t e m p e r a t u r e osci l la t ions in the combustion chamber . These osci l lat ions soon 

damped and were completely unnoticed as the pa r t i c l e s enter the throat of the 

nozz le . 

F igures 3-1 and 3-2 show the par t ic le t r a j ec to r i e s for the 120-inch 

Titan and shuttle m o t o r s , r espec t ive ly . The par t i c le t r a j ec to r i e s for the 

two motors do not vary much . This is an expected resul t however, since 

the shuttle engine and gas flow field a r e a 1.3 scale ve rs ion of the 120-inch 
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Titan engine and flow field. The chamber conditions for both engines a r e 

essent ia l ly the s a m e . 

P a r t i c l e t e m p e r a t u r e d is t r ibut ions for the Titan and simulated shuttle 

engines a r e p r e sen t ed graphical ly in F i g s . 3-3 through 3-6 . F igures 3-3 and 

3-4 show p a r t i c l e t e m p e r a t u r e s for center l ine t r a j ec to r i e s while F igs . 3-5 

and 3-6 show p a r t i c l e t e m p e r a t u r e s for the l imiting t r a j e c t o r i e s . Pa r t i c l e 

t e m p e r a t u r e osc i l la t ions occurr ing along the l imiting par t i c le t r a jec to r ies 

at the nozzle exit plane a r e evident in F i g s . 3-5 and 3-6 . There is an in ­

c r e a s e in the gas t e m p e r a t u r e due to the plume boundary shock which is 

at tached to the nozzle lip during sea level operat ion. This leads to a gas 

t e m p e r a t u r e that is higher at the plume boundary, immediately downs t ream 

from the nozzle exit p lane , than any other point in the p lume. The gas t e m ­

p e r a t u r e along this plume boundary r ema ins higher than the t empera tu re s of 

the plume co re until the effects of the boundary shock d imin i shes . Figure 3-7 

is a rad ia l t e m p e r a t u r e plot for the 120-inch Titan p lume. Tempera tu re is 

plotted v e r s u s the non-dimensional p a r a m e t e r , R/RT , for severa l X / R „ loca ­

t ions , where R is the rad ia l d is tance from the plume measu red from the 

chamber and R„, is the nozzle throat r a d i u s . The t e m p e r a t u r e in the plume 

is essent ia l ly constant in the radia l d i rec t ion for each X /R_ location until the 

flow encounte rs the boundary shock represen ted by the discontinuit ies in the 

t e m p e r a t u r e p lo t s . The low the rma l capaci tance of the smal le r d iameter 

p a r t i c l e s , which a r e located on the outermost t ra jectory closest to the plume 

boundary, a r e ex t remely sensi t ive to the increased gas t e m p e r a t u r e . As a 

resu l t of this sens i t iv i ty , the sma l l e r pa r t i c l e s exper ience a sudden. increase 

in t e m p e r a t u r e . The l a r g e r p a r t i c l e s , on the other hand, have relat ively 

l a rge r t h e r m a l capaci tances leading to a cons iderable t ime lag for the pa r t i c l e s 

to adjust to the inc reased gas t e m p e r a t u r e . This allows the sma l l e r pa r t i c les 

to a t ta in higher t e m p e r a t u r e s than the l a r g e r p a r t i c l e s . As the effects of the 

shock wave d imin i shes downs t ream of the nozzle exit p lane, the sma l l e r 

pa r t i c l e s cool as rapidly as they w e r e heated and once again the l a rge r pa r t i c l e s 

have the higher t e m p e r a t u r e s . 
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3.2 PARTICLE RADIATION 

The genera l rad ia t ion equation for determining plume radiat ion heating 

incident upon a specific t a r g e t of i n t e re s t is 

Q = f J J lX6Q s i n 9 c o s 9 d 9 d* dX ( 3 , 1 ) 

At p re sen t , the computer p r o g r a m only ca lcula tes the spec t r a l intensi ty , 

1% ,f l, emitted by the p l u m e . The t r ip le integrat ion over the two angles , 0 

and $, and the wave length, X, i s never per formed and thus the radiat ion 

heat t r ans fe r r a t e Q i s not d e t e r m i n e d . The angles 8 and <£ a r e input p a r a m ­

e te rs to the p r o g r a m and s e r v e only to orient the line of sight from the plume 

to the t a rge t (see F i g s . 3-8 and 3-9). 

Pa r t i c l e plume radia t ion intensity calculat ions a r e per formed using the 

Mie scat ter ing theory . The Mie scat ter ing theory cons iders that the radiat ion 

which t r a v e r s e s an inhomogeneous medium such a s an optically thin par t i c le 

cloud is attenuated both by the sca t te r ing of the radiat ion into other d i rec t ions 

and by the absorpt ion of rad ia t ion by the p a r t i c l e s . A digital computer p r o ­

g ram using the Mie sca t t e r ing theory is used to de t e rmine the backscat ter ing 

coefficient, (3, and the absorp t ion coefficients as functions of pa r t i c le r ad ius , 

par t ic le t empera tu re and radia t ion wave length for the alumina pa r t i c l e s in 

the rocket p lume. At a given wave length, the scat ter ing c r o s s sections of a 

homogeneous spher ica l pa r t i c l e depend p r ima r i l y on two p a r a m e t e r s ; (1) the 

rat io of par t ic le projec ted a r e a to radiat ion wave length, and (2) the index of 

refract ion for the a lumina p a r t i c l e s . These two p a r a m e t e r s must be obtained 

for input to the Mie sca t t e r ing p r o g r a m before the sca t t e r ing , a , and a b s o r p -
s 

tion, a , coefficients can be d e t e r m i n e d . The l a t t e r of the two p a r a m e t e r s , 

the complex index of re f rac t ion for the a lumina p a r t i c l e , i s the mos t difficult 

to obtain. These values m u s t be de te rmined by exper imenta l m e a n s . The 

output of the Mie p r o g r a m (in the form of a , a , and |3 as functions of R , 

T and A) has been s tored as permanent data for use by the radiat ion p r o ­

g r a m . The exper imenta l de te rmined index of re f rac t ions were determined 

3-12 
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Nozzle 
Ex i t /P l ane 

Targe t 

* - Z 

Plume Boundary-

Line of Sight 
Through Plume 

F ig . 3-9 - Schematic Showing End View of F ig . 3-8 
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for wave lengths ranging from 0.5 to 5.0 mic rons and thus l imi ts the predict ion 

of the absorp t ion and sca t te r ing coefficients. Reference"',3-1 contains the r e ­

fract ive index for both the molten and solid alumina s ta te . 

A va r i e ty of different s ize pa r t i c l e s exist at different s ta tes in the 

p a r t i c l e cloud of a two-phase rocket p lume. The number dis t r ibut ion of 

p a r t i c l e s in the p lume is a function of posit ion because the par t ic le t r a j e c ­

t o r i e s depend on pa r t i c l e s i ze . The absorpt ion and scat ter ing c r o s s sections 

a r e a l s o functions of pa r t i c l e s i z e . Since the par t ic le size i s a function of 

pos i t ion within the p lume the absorpt ion and scat ter ing c r o s s sect ions a r e 

a l so a function of posi t ion. 

The pa r t i c l e t ra jec tory p r o g r a m computes the limiting and center l ine 

t r a j e c t o r i e s and the pa r t i c l e p roper t i e s along these t r a jec to r ies for the var ious 

pa r t i c l e s i zes in the p lume . The par t i c le t ra jec tory data a r e wri t ten on m a g ­

net ic tape for use in the radia t ion p r o g r a m . Before the data can be used to 

compute radia t ion intensi ty for a specific line of sight through the p lume, the 

t r a jec to ry data mus t be t ransformed into a m o r e usable form. By performing 

a l i nea r in terpola t ion axially along each par t ic le t ra jectory and then between 

the l imit ing and center l ine t r a j ec to r i e s a rec tangular mesh of par t ic le p r o p ­

e r t i e s whose gr id s ize is ent i rely dependent upon the input value of the print 

i n t e r v a l , i s obtained. The p r o g r a m checks on the line of sight and mesh line 

i n t e r s ec t i ons to d e t e r m i n e pa r t i c l e proper ty var iance through the p lume. The 

l ine of sight through the plume is divided into a number of uniform equally 

spaced s l a b s . The number of these slabs is an input p a r a m e t e r . At each i n t e r ­

face between success ive s l abs , along the line of sight, the computer p r o g r a m 

ca lcu la tes the number densi ty , par t ic le size dis t r ibut ion, average radiat ive 

c r o s s sec t ions and pa r t i c l e energy flux. 

Ini t ial ly, the s ize d is t r ibut ion in the chamber is given by the skew-

s y m m e t r i c formula 

b+1 -aR 

*op] = v < v e p < 3 - 2 > 
3-15 
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The size distribution is altered, however, as the particles move downstream 
by the influence of particle size on diffusion ra tes . The particle density ratio 
(the ratio of the local particle density to the chamber density, R,) is deter­
mined for each particle size from the mass continuity relation. The particle 
density ratio, R, , corrects the size distribution function, ^[R ], as the 
particles move downstream. At each slab interface the maximum particle 
radius, R max, is determined by surveying the y-coordinates of the limiting 
trajectories. R max is broken down into a number of equal intervals, R , 
such that, R ' , for instance, is equal to R max/50. Using R in Eq. (3.2) and 

multiplying by the initial number of particles per unit volume in the chamber 
(input parameter RNTC) and the particle density ratio R, , the total number 
of particles per unit volume, N., present at the particular location is deter­
mined by the following integration 

- R max 

Nfc = J [<MRp(NT)(Rd)]dRp (3.3) 

The scattering and absorption coefficients previously discussed, are 
dependent not only on wave length and temperature but also particle radius. 
The coefficients used in the radiation program at each slab interface are 

average values. Calculation of the average scattering coefficient, a , is 
s 

determined from the following equation. 
R max 

where N(R ) is equal to $ (R ) • N. • R, . The particle radiative properties 

a and B are averaged over the size distribution that exists at each point 

along the line of sight as in Eq. (3.4) for a . Once all the radiative properties 

have been obtained for each slab interface on the particular line of sight through 

the plume, the radiation intensity equations are solved to determine the net 

spectral radiation intensity from the plume to ihe target . 

3-16 
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The initial s ize d is t r ibut ion in the chamber for the Ti tan is shown in 

Fig. 3-10. This curve is of the form of Eq . (3.2) where a = 2.0 and b = 1.0. 

The init ial size d is t r ibut ion in the chamber of the shuttle was assumed the 

same as the size d is t r ibu t ion in the 120-inch Ti tan . 

The re were two bas ic t a rge t locat ions for both the 120-inch Titan and 

shuttle motors invest igated in the pa r t i c l e radia t ion a n a l y s i s . F igure 3-8 

schematical ly shows two t a rge t locations and the corresponding l ines of sight. 

This schematic can be applied to ei ther the 120-inch Titan or shuttle motor 

since the two t a rge t s a r e in basical ly the same location for each of the two 

engines . The two target locat ions for the 120-inch Titan motor a r e : (1) 

X = 129 inches, Y = 180 inches , and (2) X = 209 inches , Y = 180 inches . The 

two ta rge t posit ions for the shuttle a r e : (1) X = 167.5 inches , Y = 234 inches , 

and (2) X = 272 inches , Y = 234 inches . The angles 8. and 0 a r e 300 and 

270 d e g r e e s , r espec t ive ly , and a r e the same for the 120-inch Titan and 

shuttle t a r g e t s . The two angles (9 and 8,) along with the angle <f> (see F ig . 

3-9) or ient the line of sight from the plume to the t a rge t . A rad ia l survey 

of the plume was per formed for each of the l ines of sight for the two c a s e s . 

This was done to d e t e r m i n e the effects of varying the angle <f> on the radiat ion 

intensity calcula t ions . F igu re s 3-11 through 3-14 a r e radia t ion intensity 

ve r sus wave length plots for two t a rge t s in quest ion for the 120-inch Titan 

and shuttle engines . In p a r t i c u l a r , F i g s . 3-11 and 3-12 show intensity as a 

function of wave length at the ta rge t 1 locat ion for the Titan and shuttle engines, 

respec t ive ly . F igures 3-13 and 3-14 a r e the s ame basic intensity plots for the 

120-inch Titan and shutt le engines de t e rmined at the t a rge t 2 locat ion. 

Upper and lower bounds a r e placed on the intensity emitted from a 

par t ic le plume to a specific t a r g e t . The backsca t te r ing coefficient, |3, d e t e r ­

mines these bounds. The max imum radia t ion intensity emitted by the plume 

(I (max)) incident on a t a rge t cons ide rs the backsca t te r ing coefficient to be 

z e r o , i . e . , the medium the t a rge t sees has m a x i m u m emit tance and no r e ­

flectance. The other e x t r e m e , or the. min imum radia t ion intensity emitted 

by the plume (I (min)), cons ide r s max imum sca t te r ing ((3 = 1) i .e . , the medium 

exhibits maximum re f lec tance . I ((3) is the radia t ion intensity value using the 

backscat ter ing coefficient, (3, de te rmined by the Mie sca t te r ing theory . 

3-17 
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1 2 3 4 

Wave Length, X (microns) 

Fig. 3-11 - Ta rge t 1 Radiation Intensi t ies for Titan 
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2 3 4 

Wave Length, A (microns) 

F ig . 3-12 - Targe t 1 Radiation Intensi t ies for Shuttle 
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1 2 3 4 5 

Wave Length, X (microns) 

F ig . 3-43 r- Ta rge t 2 Radiation Intensi t ies for Titan 
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O $G=-0"deg 

0 tffls 1-5-deg 

2 3 4 

Wave Length, \ (microns) 

F i g . 3-14 - Targe t 2 Radiation Intensity for Space Shuttle 

6 x 1 0 
- 4 

3-22 

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



L M S C - H R E C TR D306389 

F o r a v e r y th in m e d i u m , o r a p l u m e con ta in ing only a few p a r t i c l e s 

w h i c h i s u s u a l l y the c a s e in the s m a l l S - IVB u l l a g e and r e t r o m o t o r s (Ref. 3 - 1 ) , 

t h e u p p e r and l o w e r b o u n d a a r e n e a r l y e q u a l , w h e r e a s in a m o r e d e n s e p l u m e 

wi th m a n y p a r t i c l e s t h e l i m i t s b e c o m e w i d e r . T h e e x h a u s t p l u m e s of the 

1 2 0 - i n c h T i t a n and shu t t l e m o t o r s a r e v e r y d e n s e w i th p a r t i c l e s due to the 

h igh c o n c e n t r a t i o n of a l u m i n a i n the sol id p r o p e l l a n t for the two e n g i n e s . The 

effect of t h e d e n s e p a r t i c l e p l u m e s a r e exh ib i t ed in the r a d i a t i o n i n t e n s i t y p l o t s 

shown in F i g s . 3-11 t h r o u g h 3-ftJ.. No t i ce the wide s p r e a d ( a p p r o x i m a t e l y two 

o r d e r s of m a g n i t u d e ) b e t w e e n the I (max) and I (min) p l o t s in e a c h of the 

f i g u r e s . T h i s v a r i a t i o n i n d i c a t e s the i m p o r t a n c e of c o n s i d e r i n g the b a c k -

s c a t t e r i n g e f f ec t s i n the m o r e d e n s e p a r t i c l e p l u m e s . In e a c h of the f i g u r e s 

( F i g s . 3-11 t h r o u g h 3 -14) n o t i c e t h e d e c r e a s e in the s p e c t r a l i n t e n s i t y c u r v e s 

a t the 2 a n d 3 m i c r o n w a v e l e n g t h s . T h i s d e c r e a s e i s due to the r a d i a t i o n 

b l o c k a g e o c c u r r i n g a s a r e s u l t of the m e a n p a r t i c l e r a d i u s being on the s a m e 

o r d e r of m a g n i t u d e a s the w a v e l e n g t h . 

3.3 PLANK'S QUANTUM ARGUMENTS 

It h a s b e e n shown by the q u a n t u m a r g u m e n t s of P l a n c k and v e r i f i e d 

e x p e r i m e n t a l l y t ha t for a b l a c k body the s p e c t r a l d i s t r i b u t i o n s of h e m i s p h e r i c a l 

e m i s s i v e p o w e r and r a d i a n t i n t e n s i t y in a v a c u u m a r e g iven a s a funct ion of 

a b s o l u t e t e m p e r a t u r e and w a v e l e n g t h by 

27TC 
e A (X) = mxh (A) = c A T (3-5) 

b \5iez -i) 

w h e r e Q. ( \ ) and L (A) a r e the e m i s s i v e p o w e r and i n t e n s i t y , r e s p e c t i v e l y , 
A b A b 

and A i s t h e w a v e l e n g t h , T t h e a b s o l u t e t e m p e r a t u r e and C . and C_ a r e 

c o n s t a n t s d e t e r m i n e d by P l a n c k . T o b e t t e r u n d e r s t a n d the i m p l i c a t i o n s of 

E q . (3 .5 ) , i t h a s b e e n p lo t t ed in F i g . 3 - 1 5 . H e r e the h e m i s p h e r i c a l s p e c t r a l 

i n t e n s i t y i s g i v e n a s a funct ion of w a v e l e n g t h for s e v e r a l d i f f e r en t v a l u e s of 

the a b s o l u t e t e m p e r a t u r e . One c h a r a c t e r i s t i c of F i g . 15 t h a t i s q u i t e ev iden t 

i s tha t t he i n t e n s i t y e m i t t e d a t a l l w a v e l e n g t h s i n c r e a s e s a s the t e m p e r a t u r e 
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i n c r e a s e s . Another c h a r a c t e r i s t i c of Fig . 3-15 is that the peak of the 

spec t ra l intensity shifts toward the sma l l e r wave length as the t e m p e r a ­

tu re i n c r e a s e s . The black body is defined as a perfect abso rbe r and is 

a lso a perfect e m i t t e r . Its spec t r a l intensity and therefore i ts spec t r a l 

emiss ive power a r e only functions of the t empera tu re of the black body. 

In each of the f igures , t h e r e i s a sudden inc rease in the spec t ra l intensity 

values in the 3.0 to 5.0 m i c r o n wave length range . The spec t r a l intensity 

value I (max) at the 5.0 m i c r o n wave length i s comparable to that intensity 

emitted by a black body at a t e m p e r a t u r e between 2000 F and 3000 F (see 

Fig . 3-15). 

3.4 RESULTS 

Because the spec t r a l intensi ty plots for the 120-inch Titan and shuttle 

motors reveal only slight var ia t ions in the spec t ra l intensity values for the 

two m o t o r s , it can be a s sumed that the radiation heat t ransfe r to the t a rge t s 

of in te res t is basically the s ame in each c a s e . While it is t rue that at p resen t 

there is no na r row view s p e c t r o m e t e r data available for d i rec t compar ison 

with the analytical r e s u l t s , t he re i s sufficient c a lo r ime te r data available for 

the 120-inch Titan m o t o r . These data a r e p resen ted in Ref. 3-2 . Some of 

the ca lo r imete r locat ions for the ful l -scale Titan motor s tat ic firings a r e 

shown in Fig. 3-15. F igure 3-16 a l so shows the X, Y, Z coordinates as well 

as the direct ion angles for each c a l o r i m e t e r . The radiat ion heat data was 

obtained from two 120-inch d i ame te r motor s tat ic f i r ings . Table 3 - t shows 

the resu l t s of one of these s ta t ic f i r ings . The pr inciple t a rge t s selected in 

this analysis were the C012 and C009 t a rge t s (see F ig . 3-16). Since the 

simulated shuttle motor in this analys is is a 1.3-scale vers ion of the 120-inch 

Titan motor , the Ti tan t a rge t coordinates were scaled by 1.3 to es tabl i sh the 

shuttle target coord ina tes . This was done in o rde r to mainta in basically the 

same relat ive ta rge t posi t ions between the two m o t o r s . Since the analys is 

indicated the same spec t r a l intensity values at the two target posit ions for 

each motor , the exper imenta l radiat ion heat t ransfer r a t e de te rmined from 

the stat ic firings of the 120-inch Titan motor can be assumed the s a m e . 
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Fig . 3-16 - Ca lo r ime te r Locations and Coordinate System 
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Table 3-1 

RADIATION HEAT TRANSFER RATE PREDICTED 
BY EACH CALORIMETER 

S e n s o r 
No. 

C 0 0 1 

C002 

C003 

C 0 0 4 

C 0 0 5 

C006 

C007 

C 0 0 8 

C009 

C010 

con 
C012 

CO 13 

C 0 1 4 

C 0 1 5 

q m i n 
i V 

/ Btu \ 

\ f t 2 - s e c / 

11.7 

10.7 

5.0 

11.5 

11.8 

10.5 

5.0 

8.6 

8.7 

0.9 

2.1 

2.7 

0.7 

— 

q m a x 

/ Btu \ 

\ f t 2 - s e c / 

12.5 

11.6 

5.4 

12.1 

12.7 

11.3 

6.0 

10.4 

9.5 

1.9 

2.3 

3.6 

0.8 

— 

q a v e 

/ Btu \ 

\ f t 2 - s e c / 

12.0 

11.1 

5.2 

11.7 

12.2 

10.8 

5.2 

9.0 

9.1 

1.2 

2.2 

3.3 

0.7 

— 

q a v e / F y 

/ Btu \ 

yft -sec/ 

22 .5 

40 .1 

50.9 

23 .3 

26 .6 

26.4 

21.4 

25 .8 

28 .5 

48.8 

13.3 

32 .9 

11.4 

— 

3-27 

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC-HREC TR D306389 

Section 4 

COMPARISONS OF FLOW FIELDS GENERATED USING A GASEOUS 
METHOD-OF-CHARACTERISTICS PROGRAM AND A COUPLED 

TWO-PHASE FLOWFIELD PROGRAM 

One of the objectives of this contract is to de te rmine how well the p resen t 

liquid rocket flowfield a n a l / s i s p r o g r a m s predic t the plume environments of 

solid rocket motors (SRMs). The Titan III 120-inch SRM was chosen for this 

ana lys i s . Two flowfield computer p r o g r a m s were used to analyze this mo to r . 

These p rog rams a r e Lockheed'svMethod:4of-Characterist ics p r o g r a m (Ref. 2-5) 

(liquid or gaseous) and Kl iegel ' s Two-Phase solid rocket motor analysis p r o g r a m 

(Ref. 2-2). For the purpose of comparing the r e su l t s of these two p r o g r a m s , 

the nozzle exit plane Mach number and stat ic p r e s s u r e dis t r ibut ions were 

chosen. 

Using Lockheed's Method-of -Charac te r i s t i c s p r o g r a m , three different 

analyses of the Titan 120-inch SRM were per fo rmed . The first two analyses 

consisted of running the nozzle using equi l ibr ium chemis t ry thermodynamic 

data generated by the NASA-Lewis CEC p r o g r a m (Ref. 2-6) and ideal gas p rop ­

e r t i e s obtained at the chamber conditions of the equil ibrium chemis t ry . The 

th i rd run was made using ideal gas chamber conditions with the specific heat 

r a t e s modified to take into account the p r e sence of solid p a r t i c l e s . The method 

used for modifying the specific heat ra t io used he re was obtained assuming no 

velocity and t empera tu re lags between the gas and the p a r t i c l e s , a gas gamma 

of 1.15 and a par t ic le to gas m a s s flow ra te ra t io of 0.372. This method is 

descr ibed by Hoffman in Ref. 3 -3 . 

A fourth run was made using Kl iegel ' s coupled two-phase nozzle p r o g r a m 

(Ref. 3-2). Kliegel 's p r o g r a m is an ideal gas p r o g r a m . The gaseous t h e r m o ­

chemis t ry data used in this run was the same as the ideal gas MOC runs with 

a gas gamma of 1.15. The pa r t i c l e to gas loading was 0.372. 
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The r e s u l t s of the four runs a r e presented in F i g s . 4-1 and 4 - 2 . F igure 

4-1 p r e s e n t s the exit plane dis t r ibut ions of stat ic p r e s s u r e . The gaseous 

m e t h o d - o f - c h a r a c t e r i s t i c s run which matches the Kliegel ' s two-phase analys is 

is the run which was made using the modified specific heat r a t i o . The wors t 

compar i son is the equi l ibr ium gaseous MOC ana lys i s . F igure 4-2 p r e sen t s 

the exit p lane Mach number dis t r ibut ions from the four r u n s . The Mach 

number a s soc ia t ed with the specific heat ra t io MOC run is a gas Mach number 

modified in a s imi la r fashion to the specific heat . The equations used a r e a lso 

p resen ted in Ref. 3 - 3 . 

The r e s u l t s of this study indicate that the best compar i sons between 

gaseous ana lys i s and a two-phase analys is a r e made using the modified specific 

heat r a t i o . The wors t compar i son is between the equi l ibr ium chemis t ry gaseous 

run and the two-phase run. In this case the differences a r e due to both the two-

phase l o s s e s and the differences between equi l ibr ium chemis t ry and ideal gas 

a s sumpt ions . It will be very des i r ab le to make this same compar ison between 

p r o g r a m s when Lockheed 's coupled two-phase p r o g r a m descr ibed in Section 2 

becomes operat ional with equi l ibr ium chemis t ry . 
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Section 5 

PLUME IMPINGEMENT OUTFLOW HEATING CORRECTION 

Most c u r r e n t theor ies used in predict ing convective heat t r ans fe r r a t e s 

on shut t le - type geomet r ies subjected to exhaust plume impingement do not 

ut i l ize an adequate outflow cor rec t ion theory. When a plume impinges on a 

surface at some angle of inclination, there is an outflow-induced thinning of 

the boundary l ayer . If cu r r en t methods for predict ing convective heat t ransfer 

without outflow cor rec t ion theory a r e used, the" piredicted heating r a t e s could 

be cons iderab ly lower than the exper imental ly m e a s u r e d heating r a t e s . In 

many ins tances when sufficient exper imenta l data a r e available, it is ve ry 

difficult to make exper imenta l - theore t i ca l compar i sons . Without outflow 

analys is to de te rmine the sever i ty of the thinning of the boundary layer and 

the cor responding inc rease in convective heating r a t e s , e r roneous exper imenta l -

theore t ica l compar i sons may resul t . Convective heating r a t e s de te rmined by 

turbulent theory may compare more favorably with exper imenta l data than 

l a m i n a r theory. This may lead to an assumpt ion that the exper imenta l data a r e 

turbulent which may. in actuality be laminar da t a . When the outflow cor rec t ion 

theory is applied the laminar theory should match the laminar data and the 

turbulent- theory should match the corresponding turbulent da ta . 

The purpose of this study is to develop an outflow cor rec t ion theory that 

will be used at a future date to modify the existing convective heat t ransfe r 

methods on the Lockheed-Huntsvil le Plume Impingement Computer P r o g r a m 

(PLIMP) (Ref. 1-1). 

5.1 THREE-DIMENSIONAL SURFACE FIT FOR PRESSURE DISTRIBUTIONS 

The calculat ion of inviscid surface s t r eaml ines and heating ra t e s a r e 

dependent on the surface p r e s s u r e distr ibution. Regard less of whether the 

p r e s s u r e dis t r ibut ion is de te rmined by exper imenta l or theore t ica l methods , 
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it must possess a ce r ta in c h a r a c t e r i s t i c . The p r e s s u r e distr ibution must be 

such that it can be descr ibed by functional means . The function or functions 

used to descr ibe the p r e s s u r e dis t r ibut ion mus t a lso meet ce r ta in r e q u i r e ­

ments in that when differentiated they mus t yield continuous f i r s t and second 

der ivat ives in both the axial and c i rcumferen t ia l d i rec t ions . If the p r e s s u r e 

dis tr ibut ion could be descr ibed by a d i sc re te analyt ical function, this r e q u i r e ­

ment could be easi ly met . Unfortunately, however, this is not the ca se . In 

genera l , most if not al l , p r e s s u r e dis t r ibut ions cannot be descr ibed by an 

analytical express ion , therefore a numer ica l technique must be used. The 

numer ica l method which s e e m s to bes t fulfill the r equ i remen t s is the Method 

of the Bicubic Piecewise Polynominal Funct ions . The cubic piecewise poly­

nominal functions of one var iab le will be d i scussed f i r s t since their r e su l t s 

a r e used to generate the bicubic polynominal functions. The theore t ica l p r e s ­

sure dis tr ibut ions used in this analys is w e r e obtained from the Lockheed-

Huntsville PLIMP p rog ram. 

5.2 CUBIC PIECEWISE POLYNOMIAL FUNCTIONS 

F o r functions of one va r iab le , such as the cubic piecewise polynomial 

function, defines a function P($ ) which a s s u m e s values P . = P(0 ). at a given 

point (f>. and matches the der ivat ives ( d P / d $ ) . at each <£.. See Fig. 5 -1 . 

Fig. 5-1 - Cubic P iecewise Polynomial Function of One Variable 
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Consider the following cubic polynomial 

. Pjfo) = C j + C 2 ^ + C 3 ^ . 2 + C 4 ^ 3 (5.1) 

In o rde r to determine the coefficients C, - C . for the ploynomial P . ( ^ ) such 

that when differentiated it wil l yield continuous f i r s t der iva t ives , a se t of four 

simultaneous equations mus t be solved. Three of the four equations a re of 

the form of Eq. (5.1) while the fourth equation is the derivative equation and 

is of the form of Eq. (5.2) 

| ? ^ = C , + 2 C , 6 . + 3C„ 6? (5.2) ^ ) . = C 2 + 2 C 3 V 3 C 4 * ; 

{l*\ = 
P 2 " P 1 / J (5.3) 

By knowing the function values P.($ ) at $. where j = 1, 2 and 3 and the 

( 3 P \ ^ ^ 

3-7-) where j = 1 (calculated by Eq. (5.3), a set of four equations 

can be solved s imultaneously for the coefficients C, - C .. These coefficients 

will be used to compute any p r e s s u r e or p r e s s u r e - t h e t a derivat ive in region I 

(see Fig. 5-1). The p rocedure for computing the coefficients for region I is 

repeated to determine the se t of coefficients in each region for regions II 

through IV. The derivat ive J T T - J where j =2, can now be calculated using 

the coefficients for region l a n d Eq. (5.2). Equation (5.1) where j = 2, 3 ,4 and 

the derivat ive | T T ) make up a new set of equations which can be solved 

simultaneously for the coefficients in Region II. The end resul t is a se t of 

coefficients in each region which when used in Eqs. (5.4) and (5.5) completely 
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specify the p r e s s u r e and p r e s s u r e derivat ive at any point {(ft). 

P(<£) = C j + C 2 # + C3<^2 + C4<03 (5.4) 

| ^ = C2 + 2C3tf + 3 C 4 ^ 2 (5.5) 

The s a m e procedure as has been previously d i scussed is used to de te rmine 

the p r e s s u r e and p r e s s u r e der ivat ives in the x d i rec t ion at constant <j> values . 

The cubic piecewise functions have been used to de termine the p r e s s u r e de r iv -
j p f i p 

at ives , -j-jr and -=—.which a r e continuous der ivat ives at each grid in tersec t ion 
on Fig . 23. By knowing the p r e s s u r e and the p r e s s u r e der ivat ives with r e spec t 

to x and y the mixed der ivat ive may be determined by using the following 

equation 

9 P , . . , , 3P,.X 9P ,. . ,v 3P 
9 ' fp_ = i ^ 0 + 1 > - a ^ ^ > + u (i+ 1} " a? (i) 

9 x 3 y 2 • Ay Ay 

The bicubic piecewise polynomial functions which descr ibe the p r e s s u r e 

surface in each region (R. . - R..) can now be de termined by knowing the p r e s s u r e 

3 P 3P 9 2P (P) and three der ivat ives (-s— , -r-r , -5—5—r) at each grid in tersec t ion shown in 
o x o<p a x a <p 

Fig. 5-2. 

5.3 BICUBIC PIECEWISE POLYNOMIAL FUNCTIONS 

Consider the following bicubic polynomial. 

P(x.<M = C 0 0 + C 1 0 x + C 0 l * + . . . C 3 : j X V (5.7) 

-t £ C xV1 

i = 0 j = 0 1J 
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Examining the gr id genera ted in Section 5.2 (Fig. 5-2) a s ta tement can 

be made that applies in genera l to all bicubic polynomials . In each R.. the re 

is one and only one bicubic polynomial (Eq. 5-7) which takes on specific values 
3 p 3 p 9 2P 

of P , r— , s~r , —7- at the four c o r n e r s of the grid sec t ions . This means 
3x 90 3x 30 ° 

that if these four quanti t ies a r e specified at each of the four c o r n e r s , of the 

grid sect ion of in te res t , the bicubic polynomial function obtained will be unique 

to that grid section. When Eq. (5.7) is differentiated it will yield continuous f i rs t 

and second der ivat ives with r e spec t to x and 0 at any point within the grid 

section. 

In each gr id sect ion, P is a bicubic polynomial (Eq. 5.7). P a r t i a l 

differasntation of Eq. (5.7) with r e spec t to 0 yie lds , 

3 3 

| f (-.0)= E E J C . - x V 1 (5-8) 
i=o j = i • 

with r e spec t to x yields 

3 3 
££ «x,rf) = £ £ iCyX1" V (5.9) 

i = l j = 0 

and with r e spec t to x and y yields 

2 3 3 

3T#(x,̂ )= E E ^ ^ " V " 1 (5-10) 
i = l j = l 
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The second p r e s s u r e der iva t ives with respec t to x and with r e spec t to 

y a r e p r e s e n t in Eqs . (5.11) and (5.12). 

^ ( X , < M = £ £ J t i -nCj jxV- 2 ( 5 - H > 
d* i = 0 j = 2 

9 x i = 2 j = 0 

(5.12) 

Each of Eqs . (5.7) through (5.10) is evaluated at each of four c o r n e r s of the 

grid sect ion of in te res t . These equations make up the se t of 16 s imultaneous 

equations to be solved for the 16 coefficients descr ib ing the surface in the 

p a r t i c u l a r g r id sect ion. 

To achieve a smooth continuous surface fit, as has been previously 

d i scussed , continuity in differentiation is a requi rement . This quality of the 

surface fit is obtained by der ivat ive matching (Eqs. (5.8) through (5.10)) at 

the interface between two success ive gr id sect ions as shown on Fig . 5-2. F o r 

example , l e t u s examine regions R. . and R._ in F ig . 5-2. Suppose the coeffi­

c ients to be used in Eq. (5.7) to descr ibe the surface over Region R. . have 

been calculated. When these coefficients a r e used in Eqs . (5.8) through (5.10), 
3 P 3P 3 2 P 

the equations mus t yield values for the -~-r , -s— and the -?—r— at the in ter -^ J 3 p ox 3 x o y 
sect ions between R. . and R. ? that a re identical to those previously calculated 

by the methods in Section 5.1. Likewise, the coefficients calculated for region 

R>2 when used in Eqs . (5.8) through (5.10) mus t yield der iva t ives which are 

a lso identical to those previously calculated at the interface between R. , and 

R . 2 ' With this derivative matching continuous f i r s t , second, and mixed der iv ­

at ives a r e a s s u r e d . The end r e su l t s obtained from the bicubic piecewise poly­

nomial functions a r e p re sen ted in F ig . 5-3. The p r e s s u r e surface is completely 
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specified by individual se t s of coefficients which uniquely descr ibe a bicubic 

polynomial function in each region over the ent i re p r e s s u r e surface . At any 

point on the sur face , the p r e s s u r e and p r e s s u r e der iva t ives can be determined 

by using Eqs. (5.7) through (5.12) and the corresponding set of coefficients. 

5.4 CROSSFLOW E F F E C T S BY STREAMLINE DIVERGENCE THEORY 

DeJarnet te (Ref. 5-1) has pe r fo rmed extensive studies in the a r ea of 

s t reaml ine divergence theory and its applications to convective heat t r ans fe r 

on reen t ry vehic les . His methods for determining inviscid surface s t r e a m ­

lines on these r een t ry vehic les wil l be adapted to problem a r e a of determining 

the s t reaml ine pa t t e rns for pa r t i cu l a r shuttle type geomet r ies subjected to 

exhaust plume impingement . 

To t race an inviscid surface s t r eaml ine , an orthogonal coordinate sys tem 

along the s t reaml ine mus t be de te rmined . The geometry of the body is usually 

represen ted in a cyl indr ica l coordinate sys tem as r =f (x, <f>) with unit vec tors 

e , e and e , in the x, r and $ d i rec t ions , respect ive ly . (See Fig. 5-4). Since 

E u l e r ' s inviscid momentum equation (Eq. 5-20) only applies along a s t r eaml ine , 

a coordinate sys tem along the s t r eaml ine which can be readi ly t rans formed into 

the original cyl indr ica l coordinate sys tem mus t be developed. F igure 5-4 shows 

the unit vec tors in each of the two coordinate sy s t ems . 

The outer unit vec to r normal to the surface was de te rmined by Dejarnette 

to be 

e.T = - s i n T e + cos T (cos 6 , e - sin 6, e .) (5.-13) 
IN x (p r <p <p 

The unit vector pe rpendicu la r to the curve of the body but not necessa r i ly 

normal to the body surface is 

*NN = c o s 6 t f a r " shl6$% (5-ri> 
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Fig . 5-4 _ Unit Vector System Used to Determine St reaml ine Coordinates 
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By performing the vector cross products (Eqs. (5.14) and (5.15)) the 

unit vectors e_ (a vector tangent to the body surface) and e. . (a vector 

tangent to the body surface and perpendicular to the e„) can be determined. 

e H = e
N

 X e T (5- l6> 

e , a unit vector in the streamline direction can be determined by the following s 
equation. 

e = c o s 8 e ] ] + s i n 6 e T (5.17) 

eR defines a unit vector perpendicular to e and tangent to the body surface 

i.e., 

e p = e s x e N (6.18) 

Performing the vector products and making the necessary substitutions 

the streamline coordinates in terms of the cylindrical coordinates can be 

written as -

e = cosG cosT e + (sin8 sin6 , + cos9 cos 6, sinF) e s x <p <p r 

+ (sin0 cos 6, - cos9 sin6, sinF) e, (5..19) 
9 9 9 

ea = - sinG cosTe + (cos0 sin6, - sinrsinG cos 6.) § p x 0 0 r 

+ (cos0 cos 6, + sinG sin6, sinlT) e, (5.20) 
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5.5 METHOD FOR DETERMINING THE STREAMLINE DIRECTION (8) 

Euler's inviscid momentum equation for determining the angle 8 (Fig. 25) 

along the streamline is 

DV = V D V = : 1 VP ( 5 2 1 ) 

DT v DS p v ' 

But V = Ve , therefore Eq. (5.20) becomes 

DT DS s DS p i s - " / 

In using Euler's equations, it is assumed that there is a constant entropy level 

on the body surface. 

Equation (5.21), expressed in streamline coordinates, becomes 

D8 , . „Dff _ _1 1_ 8 P ._ _ , . 
DS • S i n i DS ~ " 2 h 8|3 {^^5) 

where h is the metric coefficient that will be discussed later in the report. 

DeJarnette, in his analysis, determine the transfomation operators re­

lating the streamline coordinate system to the cylindrical coordinate system 

(Eqs. (5.24) and (5.25)). 

J. JL _ 1 dx d . 1 dd> d 
h 3(3 h 3(3 3x h 9f 90 
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A A 

A A _8_ V e(3 _8_ 
~ e x * e 0 9x f 80 

sinG cosT -£- + 9x 

p. (cos8 cos 6 , + sinG sin 6 , sinT) ^ 

f Ftf (5.24) 

a n d 

D 1 8 1 8x 8 1 8(5 8 
D S " h 8£ h 8£ 8x h 8£ 80 s s s 

A A 

A A _8_ 0 ' s 8 
e x ' e s 8x f 80 

» (smG c o s 6 , - cos Q s m 6 , s inT) ~ 
= cosG c o s r -5— + * 7 * -5-7 

8x i 80 
(5.25) 

Using the t rans format ion ope ra to r s (Eqs. (5.24) and (5.25)), Eq. (5.23) 

can be expres sed in cyl indr ica l coordinates in the following manner . 

D8 
DS 

,pV 
sinG cosT 8x ® 

(cosG cos 6 , + sinG s in6 , s i n T ) 
'A L »V ( p J 

s i n r 
~ (smG cos d , - cosG sin 6, s i n T ) _ 

n T-, da , oj 0 da 
cos 6 cosT -r— + * 7 * ^7 

8x f 80 

(5.26) 
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Also using Eqs. (5.24) and (5.25), the geometric location derivatives 

with respect to streamline direction were determined to be 

• g | = cos6 cosr (5.27) 

~ , sinG cosfi , - cos9 sin6 , sinT 
M = & - <£ <(5;28) 

For a cylinder, which is the geometry under consideration in this anslysis, 

lgle 

(5.28) to 

the angles T and 6, are identically equal to zero reducing Eqs. (5.26) through 

D9 / P s ^ ) [- *™ ̂  ^ . ) +S2T- -h ( P / Ps }] (5'29) 
DS V v 2 

^ = cosG (5.30) 

M _ sine ( 5 3 - n 
D S f y?-31) 

Equation (5.29) can be solved by numerical integration, once the pressure deriv-

a(p/ps) 3{P/PS) 
atives r and —; are determined. These derivatives are deter-

9x 3 0 

mined by differentiating the piecewise bicubic polynomial functions describing 

the surface pressure distribution on the cylinder at the correct geometric 

location determined by Eqs. (5.39) and (5.31). Once the initial streamline direc­

tion (6) is assurred, Eqs. (5.30) and (5.30k) can be numerically integrated to deter­

mine the correct geometric location (X, $ ) at which the bicubic functions are 
8(P/PS) 3(P/PS) 

evaluated for the and the — , in Eq. (5. 29). 
ox a <p 
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5.6 METHOD OF DETERMINING THE METRIC COEFFICIENT, h 

Before presen t ing the methods for computing the me t r i c coefficient, h, 

perhaps the physical meaning of the me t r i c coefficient should be presented . 

l + d£ 

P + Dp 

Fig. 5-5 - General Orthogonal Curvi l inear Coordinate System 

For any genera l orthogonal curv i l inear coordinate , say £, (3 on the surface 

of a body, the distance between adjacent l ines at constant £ or P will vary 

from point to point. If inc rements in these quanti t ies a r e to be re la ted to 

actual , physical dis tances along the surface (dS and d£), it is therefore 

necessa ry to introduce m e t r i c coefficients say h. and h.- such that h, d(3 

and h^ d£ a r e , respect ive ly , smal l d is tances (dS and dj2) m e a s u r e d in the 

£ and P direct ions (see F ig . 5-5). Since the divergence between success ive 

5-15 

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC-HREC PR D306398 

s t r e a m l i n e s is de te rmine by h, h. is not of pa r t i cu la r importance. The t e r m 

h dp is equal to the integrat ion step size dS for solution of the equations for 

h. 

.— < 
DeJarne t t e (Ref. 5-1) sugges^s-the. following-ddifferential equation for ifche 

m e t r i c coefficient, h, 

Dh _ 99 . -• -p 9g 
DS 7 3P S l n i 3p 

(5.32) 

Using the var ious substi tutions p resen ted in Ref. 5 -1 , Eq. (5-31) can be 
r) 0 

e x p r e s s e d as follows to el iminate -r-~-, 

1 D2" 
h D S 2 

P V 2 

• s oo 

p V 2 P 
HS CO 

S h - a f ^ ' (3" M 2 ) 

^ s Voo 1 

p V 2 P 
^ S CO 

r2 h ap £ aT (p/ps» 

cos r cos 6 , 
+ _ i. ar da da ar 

9x 30 " 3x d<f> 
(5.33) 

Equation (3.32) is a genera l ized equation which applies to any geometry. 

Reducing this eq lation for a cylinder yields 
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1 D^h 
h DS2 

P s / . - 8 P . cos9 8 P \ (3 " m 2 ) 

11 nh.\ i P g 

1 h Ds ' V „„2 

P s \ / o Q 3 P sin9 9 P \ 

^ P s / 1 • Q fl 3 P , . 2fl 9 2 P + =• r sm9 cos0 -T7T + s in 6 5 
pv2 \ f a<* ax2 

•»/* • a o 92P , cos2e a 2 p \ ,,- o4\ 

2 2 2 
The der iva t ives , ~ , - § , -9—? , -9--P--,, and the a

9 a r e determined from 
8 x 9<^ 3 x 2 a<£2 9 x 8 < * 

the surface p r e s s u r e fit. This equation along with Eqs . (5.29) through (5.31) 
a r e solved simultaneously by a numer ica l integrat ion routine (Runge-Kutta) 

for the geometr ic location of the s t r eaml ine ( x , $ ) , the s t reaml ine angle (6) 

and the metric,-coefficient, H. 

5.7 RELATIONSHIP OF THE METRIC COEFFICIENTS TO CONVECTIVE 
HEAT TRANSFER THEORY 

5.7.1 Laminar Convective Heat Transfer 

Heat t ransfer through a l aminar boundary layer is calculated using the 

in tegra l form of the energy equation. The effects of var iab le f r e e s t r e a m 

proper t i e s (velocity, density and p r e s s u r e ) a r e accounted for through use of 

the appropr ia te t r ans fo rms of the flat plate solution. Non-constant p rope r t i e s 

through the boundary layer a r e a lso accounted for. 

The effects of var iable gas p rope r t i e s through the boundary layer on 

laminar boundary layer heat t ransfer a r e de te rmined by evaluating the gas 

p roper t i e s at a " re fe rence enthalpy" and using these values in the constant 
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proper ty solutions obtained by Blas ius . Based on this method, the convective 

heat t ransfer ra te to the wal l is evaluated using 

q = g . ( H - h ) . (5.35) 
^ 6 h r w 

where the adiabatic wall o r r ecovery enthalpy is 

e V 

H = ('" c dT7:L_L"* "•'•""••"' ji^e)" 

where 

r J P 2 J g 
o 

r =VPr" (5.37) 

The enthalpy conductance g, is evaluated from the Stanton number (St) 

* - s ^ - - - ^ <5-38> 
p e Re P r 

* 
The " re fe rence enthalpy" h can be de te rmined by 

h* = h + 0 . 5 ( H - h ) + 0 . 2 2 ( H - h ) (5.39) 
e x s e ' v r e ' 

The Blasius flat plate solution assuming constant proper ty flow is 

^ r = 0.332 P r 1 ' ' 3 (5.40) 
Re 
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By making the necessary subsitutions and noting that 

* P* Ve X L 
Re = — w ^ (5-41) 

Equation (5.34) becomes 

. 0.332 ( P " ^ ' V e ) 
0 5 

1 = — * T 7 T 5 ( H r • h J <5-42> 
Pr 2 / 3 X ' 5 r w 

The term X, in Eq. (5.42) is the characteristic running length and can 

be obtained by numerically integrating the following equation along a flowfield 

streamline 

S 

X L = - * - 3 T 2 / " p * M * V h 2 d S (5.43) 
L p M V hZ 7 e o 

where S is the distance along the streamline and h is the metric coefficient. 

5.r .2 Turbulent Convective Heat Transfer 

The equation for turbulent convection heat transfer is 

( P * V e > ° - 8 ( x ^ ' 2 ( H r - h w > (5.44) 
0.0296 * rt ° ' " * x - 2 

q ~ 0 * 0 . 6 6 P r 

where X„ is the turbulent characteristic running length and can be calculated 

by Eq. (5.45) ' 

J-'f ~ sje * 1 25 / P V- V e h d S (5-45> 
P 
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Again, as in the l aminar case , the me t r i c coefficients contr ibut ions to the 

cha rac t e r i s t i c running length a r e revealed. 

5.8 RESULTS 

A digital computer p r o g r a m using the theory presented in the preceding 

section was developed to calculate inviscid surface s t r eaml ines on a cylinder 

subjected to exhaust plume impingement . The p r e s s u r e d is t r ibut ion used by 

the p r o g r a m was calculated by the Lockheed-Huntsvi l le PLIMP p r o g r a m 

-•{Ref.; 2-3) and i s p resen ted graphical ly inrFigv 5-6-.- Figure* 5*7"is a.plot of'••••••.'•• 

the inviscid s t r eaml ine coordinates (<}> ve r sus x) for seve ra l ini t ial s t r eaml ine 

start ing angles , 9, while F ig . 5-8 is a plot of the m e t r i c coefficient v e r s u s 

dis tance X for one of these s t r eaml ines (9 = 0.10). Notice in F ig . 5-7 how 

the s t r eaml ines d iverge at an increas ing ra t e as they proceed axially down 

the cyl inder . This d ive rgence , i .e . , the spreading of the s t r e a m l i n e s , is 

reflected by the m e t r i c coefficient plot in F ig . 5-8. The m e t r i c coefficient 

i nc r ea se s at a modera te r a t e to X = 4 inches . F r o m X = 4 inches to X = 4.5 

inches , there is a sudden abrupt i nc rease in the m e t r i c coefficient that can 

be at t r ibuted to the inc reased spreading between s t r e a m l i n e s . 
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Section 6 

CONCLUSIONS 

Development of an equi l ibr ium coupled two-phase computer p r o g r a m 

for solid rocket motor nozzle and plume analysis has been initiated and 

desc r ibed . This p r o g r a m will provide a descr ip t ion of the exhaust of solid 

rocket motors which may be utilized in performing base heating and plume 

impingement analys is for the space shuttle vehic le . A compar ison of tech­

niques for predicting solid motor exhaust flowfields was presented which 

indicates significant differences in the predic ted flow fields obtained using 

a two-phase computer p r o g r a m and a gaseous flowfield p r o g r a m . 

A plume impingement convective heat t r ans fe r theory with outflow 

correc t ions was presented that could be incorporated into the heat t ransfer 

portion of the Plume Impingement p r o g r a m which would resu l t in an outflow 

cor rec ted heat t ransfer ana lys i s which may be important for shut t le- type 

vehicle appl icat ions. 

The solid pa r t i c l e radia t ion ana lys is for the Ti tan 120-inch motor and 

simulated shuttle motor p resen ted in this r epor t is based on seve ra l quantit ies 

including: the par t ic le environment , pa r t i c l e s ize dis t r ibut ion, the scat ter ing 

and absorption coefficients of the p a r t i c l e s , the index of ref ract ion of the 

pa r t i c l e s as a function of t e m p e r a t u r e and wave length and the radiance of 

the par t ic le cloud. The technique used in this analys is has shown that better 

data on scat tering and absorpt ion coefficients and index of ref ract ion of the 

alumina par t ic les is de s i r ab l e for any future analys is of shuttle m o t o r s . 

Also a technique for m o r e easi ly obtaining radiat ion data once m o r e than one 

line of sight should be cons ide red . With the development of the equi l ibr ium 

coupled two-phase ana lys i s a m o r e re l iable flow field for obtaining radiat ion 

heat t ransfer data will be r ea l i zed . 
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